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1 Homogeneous Distributions of Order −1, Convolution, and
Fundamental Solutions

1.1 Special homogeneous distributions of order −1

1.1.1 The principal value of 1/x as a complex limit

Last time, we were discussing homogeneous distributions. When classifying homogeneous
distributions of order -1 in 1 dimension, we saw two interesting distributions:

δ0, PV
1

x
.

If you like complex analysis, you can consider the function

f(z) =
1

z
=

1

x+ iy
.

Then f(z) = 1
x−iε on the line L−ε below the real line:

What is limε→0
1

x−iε? Apply this to a test function:

1

x− iε
(ϕ) =

∫
ϕ(x)

x− iε
dx

≈
∫
R\[ε,ε)

ϕ(x)

x− iε
+

∫
1
2
Cε

ϕ(z)

z
dz

1



≈ PV
1

x
(ϕ) + ϕ(0) ·

∫
1
2
Cε

1

z
dz

Write ln z = ln |z|+ i arg z. Then z = εeiθ for θ ∈ [π, 2π]

= PV
1

x
(ϕ) + ϕ(0) ·

∫ 2π

π

iεeiθ

εeiθ
dθ

= PV
1

x
(ϕ) + ϕ(0)πi.

So

lim
ε→0

1

x− iε
= PV

1

x
+ πiδ0.

If we do the same approximation from the line Lε above the real line, we get

lim
ε→0

1

x+ iε
= PV

1

x
− πiδ0.

What is ∂x PV 1
x? We can calculate that

− lim
ε→0

1

(x− iε)
=

(
PV

1

x

)′
+ πiδ′0,

and repeat this idea to find the derivatives of PV 1
x .

1.1.2 1/|x| as a distribution

What is 1
|x| as a distribution?

lim
ε→0

∫
[−1,1]\[−ε,ε)

1

|x|
ϕ(x) dx =

∫
1

|x|
(ϕ(x)− ϕ(0)) dx+ ϕ(0)

∫
1

|x|
dx

→
∫ 1

−1

1

|x|
(ϕ(x)− ϕ(0)) dx+ 2ϕ(0)| log ε|.

But this does not converge as ε → 0. So we can try to renormalize, calculating the
integral when we subtract out the divergent term:

1

|x|
(ϕ) := lim

ε→0

∫
R\[−ε,ε]

1

|x|
(ϕ(x)− ϕ(0)) dx− 2ϕ(0)| log ε|

However, this breaks the homogeneity.
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1.2 Properties of convolution

Definition 1.1. Let ϕ,ψ ∈ D. The convolution is the function

(ϕ ∗ ψ)(x) =

∫
ϕ(y)ψ(x− y) dy.

Observe that this is smooth in x. What about the support?

Proposition 1.1.
suppϕ ∗ ψ ⊆ suppϕ+ suppψ

Proof. If we want to know the support, call K = suppϕ and K1 = suppψ. If (ϕ∗ψ)(x) 6= 0,
then we must have x ∈ K +K1.

So we can think about convolution as a function

∗ : D ×D → D.

Proposition 1.2 (commutativity of convolution).

ϕ ∗ ψ = ψ ∗ ϕ.

Proof. Make the change of variables z = x− y in the integral.

Proposition 1.3 (associativity of convolution).

ϕ ∗ (ψ ∗ ζ) = (ϕ ∗ ψ) ∗ ζ.

So (D,+, ∗) is a commutative algebra. We have another commutative algebra structure
on D, (D,+, ·). We will later see that these structures are not unrelated; they are mirror
images of each other.

With multiplication, we have the Leibniz rule:

∂(ψϕ) = ∂ψ · ϕ+ ψ · ∂ϕ.

We don’t exactly have a Leibniz rule for convolution:

Proposition 1.4.
∂(ψ ∗ ϕ) = ψ ∗ ∂ϕ = ϕ ∗ ∂ψ.

Proposition 1.5. If ϕ ∈ L1 and ψ ∈ L∞, then

‖ϕ ∗ ψ‖L∞ ≤ ‖ϕ‖L1‖ψ‖L∞ .
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Proof.

|(ϕ ∗ ψ)(x)| ≤
∫
|ϕ| · sup |ψ|

= ‖ϕ‖L1‖ψ‖L∞ .

When you think of convolution, you want to think of two things: regularity and support.
If ϕ ∈ D and ψ ∈ E , then we lose information about the support, so ϕ∗ψ ∈ E . So D∗E → E .
On the other hand, if we take a derivative of the convolution, we just need to be able to
take a derivative of one of the factors. Here is the takeaway:

• For the support of the convolution, we need the support of both factors.

• For regularity, we need the regularity of just one factor!

We can think of convolutions as distributions: If ϕ ∈ E and ψ ∈ D,

ϕ ∗ ψ(x) = ϕ(ψ(x− ·)).

This right hand side is well-defined even if ϕ ∈ D′. So we see that

D′ ∗ D → E .

Similarly, we have
E ′ ∗ D → D.

What about E ′ ∗ E ′? If u, v, ϕ ∈ D, then

(u ∗ v)(ϕ) =

∫∫
u(y)v(x− y) dyϕ(x) dx

Change variables using z = x− y so ϕ(x) = ϕ(z + y).

=

∫∫
u(y)v(z)ϕ(z + y) dy dz

=

∫
u(y)

∫
v(z)ϕ(z + y) dz︸ ︷︷ ︸

v(ϕ(y+·))

dy

= u(v(ϕ(y + ·))).

This conclusion makes sense even if u, v ∈ E ′. We can make this precise if we can approxi-
mate elements of E ′ by elements in E . So we get

E ′ ∗ E ′ → E ′.

However, D′ ∗ D′ is undefined.
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1.3 Fundamental solutions to PDEs

Now suppose we have the PDE
P (∂)u = f,

where P is linear with constant coefficients and f is a distribution. The simplest f we can
consider is δ0, which gives us the equation

P (∂)K = δ0

The next simplest f we can consider is δx0 . So we get

P (∂)K(· − x0) = δx0

by invariance with respect to translations.
Can we write a general function as a superposition of δ functions? If we have a Riemann

integral, we can approximate it by a sum of pieces which look like Dirac masses.

So can we make sense of something that looks like

f =

∫
f(x0)δx0 dx0?

We can define this by applying f to a test function:

ϕ(ϕ) =

∫
f(x0) δx0(ϕ)︸ ︷︷ ︸

=ϕ(x0)

dx0.

So if we can deal with a Dirac masses, we can deal with a lienar combination of Dirac
masses and hence any function as a superposition of Dirac masses. So the solution should
looks like

u(x) =

∫
f(x0)K(x− x0) dx0.

This was some intuition1, but here are some definitions.

Definition 1.2. K is a fundamental solution of P (∂) if

P (∂)K = δ0.
1Or maybe confusion!
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Proposition 1.6. The function u = K ∗ f solves the equation

P (∂)u = f.

Proof.

P (∂)u = P (∂)(K ∗ f)

= P (∂K) ∗ f
= δ0 ∗ f.

We are done if f ∗ δ0 = f . If f ∈ D, then

f ∗ δ0(x) = δ0(f(x− ·)) = f(x).

The same works for f ∈ D′.

In this proof, we saw that δ0 is the identity with respect to *. For multiplication, 1 is the
identity. The constant 1 function has support on all of Rn, but it has regularity; conversely,
δ0 has 1 point as it support but no regularity. You can think of these as opposites.

Example 1.1. With our notation, the fundamental theorem of calculus looks like this:

Theorem 1.1. If ∂xu = f in R, then

u =

∫
f(x) dx+ C.

If we specify that u(−∞) = 0, then

u(x) =

∫ x

−∞
f(y) dy.

We want to interpret this as a convolution. First, let’s compute the fundamental
solution:

∂xK = δ0, K(−∞) = 0.

This tells us that
K = H(x)

is the Heaviside function. By our proposition, u = K ∗ f . We can write this as

u(x) =

∫
H(x− y)f(y) dy

For H(x− y) to give 1 and not 0, we need x− y > 0.

=

∫ x

−∞
f(y) dy.

Is the fundamental solution K unique? In general, if K is a constant solution, then
K + C is a fundamental solution for any constant C. If we ask for K = 0 at −∞, we get
K = H. But if we ask for K = 0 at +∞, we get K = H − 1. If we ask for K to be odd,
we get K = H − 1/2.
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